Systèmes cristallins
Révision datée du 20 février 2009 à 23:22 par Papyfred (discussion | contributions) (→systèmes cristallins)
Sommaire
systèmes cristallins
L'étude des cristaux permet de visualiser des plans, axes et centres de symétrie… L'étude des divers éléments de symétrie, a débouché sur la mise en évidence de 14 types de réseaux cristallins (les réseaux " de Bravais "), liés à 7 types fondamentaux de symétrie d'orientation : les 7 systèmes cristallins.
Ces systèmes sont caractérisés par le rapport de 3 axes et des 3 angles que forment entre eux ces axes.
Dans l'énumération qui suit, on donne, le nom du système cristallin, la forme de la maille élémentaire, le rapport des 3 axes (a/b/c), celui des 3 angles (alpha/béta/gamma), entre eux…
Système cubique
cube ; a = b = c ; alpha = béta = gamma = 90°
Système quadratique
prisme droit à 4 faces rectangulaires égales et à 2 bases carrées ; a = b ≠ c ; alpha = béta = gamma = 90°
Système orthorhombique
prisme droit à 4 faces rectangulaires égales 2 à 2 et à 2 bases rectangulaires ; a ≠ b ≠ c ; alpha = béta = gamma = 90°
Système monoclinique (ou clinorhombique)
prisme oblique à 4 faces parallélogramatiques égales 2 à 2 et à 2 bases rectangulaires ; a ≠ b ≠ c ; alpha = gamma = 90°, béta ≠ 90°
Système triclinique
prisme oblique à 4 faces latérales et à bases parallélogramatiques égales 2 à 2 ; a ≠ b ≠ c ; alpha ≠ béta ≠ gamma, aucun = 90°
Système rhomboédrique
6 faces losangiques égales (rhomboèdre) ; a = b = c ; alpha = béta = gamma ≠ 90°
Système hexagonal
prisme droit à 6 faces latérales rectangulaires égales et à 2 bases hexagonales ; a = b ≠ c ; alpha = béta = 90° gamma = 120°